計(jì)算素?cái)?shù),prime numbers

返回

ppm> search prime Searching in Active Repositories 1. Bio-MCPrimers [1.04] Bio-MCPrimers 2. Math-Prime-Simple [0.12] Math-Prime-Simple 3. Math-Prime-TiedArray [0.02] Math-Prime-TiedArray ppm> install 2 Package 2: ==================== Install 'Math-Prime-Simple' version 0.12 in ActivePerl 5.8.8.817. ==================== Downloaded 1782 bytes. Extracting 5/5: blib/arch/auto/Math/Prime/Simple/.exists Installing C:\Perl\html\site\lib\Math\Prime\Simple.html Installing C:\Perl\site\lib\Math\Prime\Simple.pm Successfully installed Math-Prime-Simple version 0.12 in ActivePerl 5.8.8.817. NAME Math::Prime::Simple - Calculate prime numbers SYNOPSIS use Math::Prime::Simple qw(prime each_prime); @ranges = ( [ 1000, 1100 ], [ 10000, 11000 ], ); # primes calculation $primes = prime( @ranges ); # primes iteration while ($prime = each_prime( 0, $primes )) { print "$prime\n"; } DESCRIPTION Math::Prime::Simple calculates prime numbers by applying the Sieve of Eratosthenes. FUNCTIONS prime Calculates prime numbers. @ranges = ( [ 1000, 1100 ], [ 10000, 11000 ], ); $primes = prime( @ranges ); Each range within @ranges will be evaluated and its prime numbers will be saved within the arrayref $primes, accessible by the array index; the prime numbers of the first range may be accessed by @{$primes->[0]}. each_prime Returns each prime number as string. while ($prime = each_prime( $index, $primes )) { print "$prime\n"; } $index equals the array index of @ranges. If not all prime numbers are being evaluated by each_prime(), it is recommended to undef @{"Math::Prime::Simple::each_prime_$index"} after usage of each_prime(). EXPORT "prime(), each_prime()" are exportable.
Semiprime 數(shù)學(xué)中,兩個(gè)素?cái)?shù)的乘積所得的自然數(shù)我們稱之為半素?cái)?shù)(也叫雙素?cái)?shù),二次殆素?cái)?shù)) http://en.wikipedia.org/wiki/Goldbach's_conjecture http://baike.baidu.com/view/1808.htm 【陳景潤與哥德巴赫猜想】Goldbach Conjecture   一   陳景潤在福州英華中學(xué)讀書時(shí),有幸聆聽了清華大學(xué)調(diào)來的一名很有學(xué)問的數(shù)學(xué)教師講 課。他給同學(xué)們講了一道世界數(shù)學(xué)難題:“大約在200年前,一位名叫哥德巴赫的德國數(shù)學(xué) 家提出了‘任何一個(gè)偶數(shù)均可表示兩個(gè)素?cái)?shù)之和’,簡稱1+1。他一生也沒證明出來,便給 俄國圣彼得堡的數(shù)學(xué)家歐拉寫信,請他幫助證明這道難題。歐拉接到信后,就著手計(jì)算。他 費(fèi)盡了腦筋,直到離開人世,也沒有證明出來。之后,哥德巴赫帶著一生的遺憾也離開了人 世,卻留下了這道數(shù)學(xué)難題。200多年來,這個(gè)哥德巴赫猜想之謎吸引了眾多的數(shù)學(xué)家,從 而使它成為世界數(shù)學(xué)界一大懸案”。老師講到這里還打了一個(gè)有趣的比喻,數(shù)學(xué)是自然科學(xué) 皇后,“哥德巴赫猜想”則是皇后王冠上的明珠!這引人入勝的故事給陳景潤留下了深刻的 印象,“哥德巴赫猜想”像磁石一般吸引著陳景潤。從此,陳景潤開始了摘取數(shù)學(xué)皇冠上的 明珠的艱辛歷程...... PRIME NUMBERS NOT SO RANDOM? 來自美國數(shù)學(xué)學(xué)會(huì)的網(wǎng)頁:http://aimath.org/ Dan Goldston and his Turkish colleague Yalcin Cem Yildirim have smashed all previous records on the size of small gaps between prime numbers. This work is a major step toward the centuries-old problem of showing that there are infinitely many 'twin primes': prime numbers which differ by 2, such as 11 and 13, 17 and 19, 29 and 31,... 稍微具體的介紹在http://aimath.org/goldston_tech/ 其中有一段提到了已故的偉大數(shù)學(xué)家陳景潤: In the 1960's and 1970's sieve methods developed to the point where the great Chinese mathematician Chen was able to prove that for infinitely many primes p the number p+2 is either prime or a product of two primes. However the well-known ``parity problem'' in sieve theory prevents further progress. 隨后是相鄰素?cái)?shù)的距離估計(jì)的進(jìn)展,盡管歷史上每一次壓縮的數(shù)值看起來顯得很小,可難度 是難以想象的。這次的牛人卻把結(jié)果提高了一個(gè)數(shù)量級,直接得出: Pn+1 - Pn < (logPn)^(8/9) Nature網(wǎng)站上有人撰文給予了高度評價(jià): A team of physicists may have stumbled upon a surprising discovery about one of the deepest and best-studied questions in pure mathematics: whether or not prime numbers appear randomly in the sequence of whole numbers. (http://www.nature.com/nsu/030317/030317-13.html)
返回
共和县| 肇东市| 德化县| 新疆| 枞阳县| 余江县| 罗山县| 普定县| 阿勒泰市| 新河县| 西充县| 巴东县| 辽阳市| 山东| 城市| 平顶山市| 阿拉善盟| 曲水县| 黎川县| 鄯善县| 泽普县| 滨海县| 安岳县| 蒙城县| 铅山县| 菏泽市| 庆阳市| 克什克腾旗| 松原市| 若尔盖县| 庄浪县| 常宁市| 邵阳县| 武冈市| 富裕县| 中西区| 鄂温| 城固县| 涿州市| 永胜县| 江永县|